Гибридная вычислительная система - Definition. Was ist Гибридная вычислительная система
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Гибридная вычислительная система - definition

Гибридные вычисления; Гибридные вычислительные системы

ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА         
комплекс из нескольких ЭВМ или вычислительных устройств (аналоговых и цифровых), объединенных единой системой управления. Применяют при моделировании сложных систем, для оптимизации систем автоматического управления, решения нелинейных уравнений в частных производных и т. д.
Гибридная вычислительная система         

аналого-цифровая вычислительная машина, комбинированная вычислительная машина, комбинированный комплекс из нескольких электронных вычислительных машин (См. Вычислительная машина), использующих различное представление величин (аналоговое и цифровое) и объединённых единой системой управления. В состав Г. в. с., кроме аналоговых и цифровых машин (АВМ и ЦВМ) и системы управления, обычно входят преобразователи представления величин, устройства внутрисистемной связи и периферийное оборудование (см. структурную схему на рис.). Г. в. с. - комплекс ЭВМ, в этом её главное отличие от гибридной вычислительной машины, названной так потому, что она строится на гибридных решающих элементах, либо с использованием аналоговых и цифровых элементов.

В литературе часто к Г. в. с. относят АВМ с параллельной логикой, АВМ с цифровым программным управлением и АВМ с многократным использованием решающих элементов, снабженные запоминающим устройством. Такого рода вычислительные машины, хотя и содержат элементы, используемые в ЦВМ, но по-прежнему сохраняют аналоговый способ представления величин и все специфические особенности и свойства АВМ. Появление Г. в. с. обусловлено тем, что для решения многих новых задач, связанных с управлением движущимися объектами, оптимизацией и моделированием систем управления, созданием комплексных тренажеров и др., возможности отдельно взятых АВМ и ЦВМ оказываются уже недостаточными.

Расчленение вычислительного процесса в ходе решения задачи на отдельные операции, выполняемые АВМ и ЦВМ в комплексе, уменьшает объём вычислительных операций, возлагаемых на ЦВМ, что при прочих равных условиях существенно повышает общее быстродействие Г. в. с.

Различают аналого-ориентированные, цифро-ориентированные и сбалансированные Г. в. с. В системах первого типа ЦВМ используется как дополнительное внешнее устройство к АВМ, предназначенное для образования сложных нелинейных зависимостей, запоминания полученных результатов и для осуществления программного управления АВМ. В системах второго типа АВМ используется как дополнительное внешнее устройство ЦВМ, предназначенное для моделирования элементов реальной аппаратуры, многократного выполнения небольших подпрограмм.

Создание эффективных гибридных комплексов требует в первую очередь уточнения основных областей их применения и детального анализа типичных задач из этих областей. В результате этого устанавливают рациональную структуру гибридного комплекса и формируют требования к его отдельным частям.

Задачи, которые эффективно решаются на Г. в. с., можно разбить на следующие основные группы: моделирование в реальном масштабе времени автоматических систем управления, содержащих как аналоговые, так и цифровые устройства; воспроизведение в реальном масштабе времени процессов, содержащих высокочастотные составляющие и переменные, изменяющиеся в широком диапазоне; статистическое моделирование; моделирование биологических систем; решение уравнений в частных производных; оптимизация систем управления.

Примером задачи первой группы может служить моделирование системы управления прокатного стана. Динамика процессов в нём воспроизводится на аналоговой машине, а специализированная управляющая станом машина моделируется на универсальной ЦВМ среднего класса. Вследствие кратковременности переходных процессов в приводах прокатных станов, полное моделирование таких процессов в реальном масштабе времени потребовало бы применения сверхбыстродействующих ЦВМ. Аналогичные задачи часто встречаются в системах управления военными объектами.

Типичными для второй группы являются задачи управления движущимися объектами, в т. ч. и задачи самонаведения, а также задачи, возникающие при создании вычислительной части комплексных тренажеров. Для задач самонаведения характерно формирование траектории движения в процессе самого движения. Большая скорость изменения некоторых параметров при приближении объекта к цели требует высокого быстродействия управляющей системы, превышающего возможности современных ЦВМ, а большой динамический диапазон - высокой точности, трудно достижимой на АВМ. При решении этой задачи на Г. в. с. целесообразно возложить воспроизводство уравнений движения вокруг центра тяжести на аналоговую часть, а движение центра тяжести и кинематические соотношения - на цифровую часть вычислительной системы.

К третьей группе относятся задачи, решение которых получается в результате обработки многих реализаций случайного процесса, например решение многомерных уравнений в частных производных методом Монте-Карло, решение задач стохастичемкого программирования, нахождение экстремума функций многих переменных. Многократная реализация случайного процесса возлагается на быстродействующую АВМ, работающую в режиме многократного повторения решения, а обработка результатов, воспроизводство функций на границах области, вычисление функционалов - на ЦВМ. Кроме того, ЦВМ определяет момент окончания счёта. Применение Г. в. с. сокращает время решения задач этого вида на несколько порядков по сравнению с применением только цифровой машины.

Аналогичный эффект достигается при использовании Г. в. с. для моделирования процессов распространения возбуждения в биологических системах. Специфика этого процесса заключается в том, что даже в простейших случаях требуется воспроизводить сложную нелинейную систему уравнений в частных производных.

Поиск решения задачи оптимального управления для объектов выше третьего порядка обычно связан с большими, часто непреодолимыми, трудностями. Ещё больше они возрастают, если необходимо отыскать оптимальное управление в процессе работы системы. Г. в. с. в значительной степени помогают устранить эти трудности и использовать такие сложные в вычислительном отношении методы, как принцип максимума Понтрягина.

Применение Г. в. с. эффективно также при решении нелинейных уравнений в частных производных. При этом могут решаться как задачи анализа, так и задачи идентификации и оптимизации объектов. Примером задачи оптимизации может служить подбор нелинейности теплопроводного материала для заданного распределения температур; определение геометрии летательных аппаратов для получения требуемых аэродинамических характеристик; распределение толщины испаряющегося слоя, предохраняющего космические корабли от перегрева при входе в плотные слои атмосферы; разработка оптимальной системы подогрева летательных аппаратов с целью предохранения их от обледенения при минимальной затрате энергии на подогрев; расчёт сети ирригационных каналов и установление оптимальных расходов в них и т.п. При решении этих задач ЦВМ соединяется с сеточной моделью, многократно используемой в процессе решения.

Развитие Г. в. с. возможно в двух направлениях: построение специализированных Г. в. с., рассчитанных на решение только одного класса задач, и построение универсальных Г. в. с., позволяющих решать сравнительно широкий класс задач. Структура такого универсального гибридного комплекса (рис.) состоит из АВМ однократного действия, АВМ с повторением решения, сеточной модели, устройств связи между машинами, специального оборудования для решения задач статистического моделирования и периферийного оборудования. Помимо стандартного математического обеспечения (См. Математическое обеспечение) ЭВМ, входящих в комплекс, в Г. в. с. требуются специальные программы (См. Программа), обслуживающие систему связи машин и автоматизирующие процесс подготовки и постановки задач на АВМ, а также единый Язык программирования для комплекса в целом.

Наряду с новыми вычислительными возможностями в Г. в. с. возникают специфические особенности, в частности появляются погрешности, которые в отдельно работающих ЭВМ отсутствуют. Первичными источниками погрешностей являются временная задержка аналого-цифрового преобразователя, ЦВМ и цифро-аналогового преобразователя; ошибка округления в аналого-цифровом и цифро-аналоговом преобразователях; ошибка от неодновременной выборки аналоговых сигналов на аналого-цифровой преобразователь и неодновременной выдачи цифровых сигналов на цифро-аналоговый преобразователь; ошибки, связанные с дискретным характером выдачи результатов с выхода ЦВМ. При автономной работе ЦВМ с преобразователями временная задержка, например, не вызывает погрешности, а в Г. в. с. она не только может вызвать существенные погрешности, но и нарушить работоспособность всей системы.

Анализ погрешностей Г. в. с. имеет значение как для оценки погрешности работы комплекса при решении определённого класса задач, так и для разработки методов повышения точности и эффективности системы. Первичные погрешности автономно работающих АВМ и ЦВМ, входящих в Г. в. с., достаточно хорошо изучены, но оценка погрешности при решении с помощью гибридного комплекса нелинейных задач представляет ещё неразрешенную проблему.

Лит.: Исследование кибернетических проблем вычислительно-управляющего комплекса блюминга 1300, в кн.: Управление производством. Труды III Всесоюзного совещания по автоматическому управлению (технической кибернетике), Одесса, 20-26 сент. 1965, М., 1967; Гулько Ф. Б., Коган Б. Я., Райскина М. Е., О возможном применении вычислительных машин для изучения механизмов развития заболевания, "Автоматика и телемеханика", 1967, № 8, с. 104-106; Soudack А. С., Little W. D., An economical hybridizing scheme for applying Monte-Carlo methods to the solution of partial-differential equations, "Simulation", 1965, v. 5, № 1, p. 9-11; Bekey G. A., Karplus W. J., Hybrid computation, N. Y., 1968.

Б. Я. Коган.

Структурная схема универсальной гибридной вычислительной системы: сплошной линией обозначены информационные, а пунктирной - управляющие каналы.

Гибридная вычислительная система         
Гибридная вычислительная системасистема с гетерогенной аппаратной вычислительной структурой. Комбинация любых вычислительных устройств или блоков, например вычисления с помощью CPU и GPU совместно.

Wikipedia

Гибридная вычислительная система

Гибридная вычислительная система — система с гетерогенной аппаратной вычислительной структурой. Комбинация любых вычислительных устройств или блоков, например вычисления с помощью CPU и GPU совместно.

Was ist ГИБРИДНАЯ ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА - Definition